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Abstract. We study the relaxation of a test particle immersed in a bath of field particles interacting via
weak long-range forces. To order 1/N in the N → +∞ limit, the velocity distribution of the test particle
satisfies a Fokker-Planck equation whose form is related to the Landau and Lenard-Balescu equations in
plasma physics. We provide explicit expressions for the diffusion coefficient and friction force in the case
where the velocity distribution of the field particles is isotropic. We consider (i) various dimensions of space
d = 3, 2 and 1; (ii) a discret spectrum of masses among the particles; (iii) different distributions of the bath
including the Maxwell distribution of statistical equilibrium (thermal bath) and the step function (water
bag). Specific applications are given for self-gravitating systems in three dimensions, Coulombian systems
in two dimensions and for the HMF model in one dimension.

PACS. 05.20.-y Classical statistical mechanics – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

Kinetic theories of many-particles systems are important
to understand the dynamical evolution of the system and
to determine transport properties. The first kinetic equa-
tion for a Hamiltonian N -body system was derived by
Boltzmann in his theory of gases [1]. In that case, the
particles do not interact except during strong collisions.
Kinetic theories were later extended to the case of parti-
cles in interaction by Landau [2] in the case of plasmas
and by Chandrasekhar [3] in the case of stellar systems.
In this Introduction, we present a short historical review
of kinetic equations with gravitational or coulombian in-
teraction, stressing the literature before the sixties when
these topics were developed. Additional references can be
found in the books of Balescu [4] and Saslaw [5], or in
the review of Kandrup [6]. The rest of the paper considers
extensions of these kinetic theories to new situations.

Landau [2] derived his kinetic equation by starting
from the Boltzmann equation and considering a weak de-
flection limit. Indeed, for a Coulombian potential of inter-
action slowly decreasing with the distance as r−1, weak
collisions are the most frequent ones. Each encounter in-
duces a small change in the velocity of a particle but the
cumulated effect of these encounters leads to a macro-
scopic process of diffusion in velocity space. This treat-
ment, which assumes that the particles follow linear tra-
jectories with constant velocity in a first approximation,
yields a logarithmic divergence of the diffusion coefficient
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for both small and large impact parameters but the equa-
tion can still be used successfully if appropriate cut-offs
are introduced. A natural lower cut-off, which is called the
Landau length, corresponds to the impact parameter lead-
ing to a deflection at 90◦. On the other hand, in a neutral
plasma, the potential is screened on a distance correspond-
ing to the Debye length. Phenomenologically, the Debye
length provides an upper cut-off. Later on, Lenard [7] and
Balescu [8] developed a more precise (but also more for-
mal) kinetic theory that could take into account collective
effects. This gives rise to the inclusion of the dielectric
function |ε(k,k · v)|2 in the denominator of the kinetic
equation. Physically, this means that the particles are
“dressed” by a polarization cloud. The original Landau
equation, which ignores collective effects, is recovered from
the Lenard-Balescu equation when |ε(k,k ·v)|2 = 1. How-
ever, with this additional term, it is found that the loga-
rithmic divergence at large scales is now removed and that
the Debye length is indeed the natural upper lengthscale
to consider.

In stellar dynamics, Chandrasekhar [3] developed a ki-
netic theory in order to determine the timescale of col-
lisional relaxation. He computed in particular the coeffi-
cients of diffusion and friction (second and first moments
of the velocity increments) by considering the mean ef-
fect of a succession of two-body encounters. Since this ap-
proach can take into account large deflections, there is
no divergence at small impact parameters and the grav-
itational analogue of the Landau length appears natu-
rally. However, this approach leads to a logarithmic di-
vergence at large scales that is more difficult to remove
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than in plasma physics because of the absence of Debye
shielding for the gravitational force. In a series of papers,
Chandrasekhar and von Neumann [9] developed a com-
pletely stochastic formalism of gravitational fluctuations
and showed that the fluctuations of the gravitational force
are given by the Holtzmark distribution (a particular Lévy
law) in which the nearest neighbor plays a prevalent role.
From these results, they argued that the logarithmic di-
vergence has to be cut-off at the interparticle distance.
However, since the interparticle distance is smaller than
the Debye length, the same arguments should also ap-
ply in plasma physics, which is not the case. Therefore,
the conclusions of Chandrasekhar and von Neumann [9]
are usually taken with circumspection. It is usually ar-
gued (e.g., Cohen et al. [10], Saslaw [5], de Vega and
Sanchez [11]) that the logarithmic divergence should be
cut-off at the physical size R of the cluster for finite sys-
tems or at the Jeans scale for infinite systems, since the
Jeans length is the presumable analogue of the Debye
length in the present context (see Kandrup [6]). Chan-
drasekhar [12] also developed a Brownian theory of stellar
dynamics and showed that, on a qualitative point of view,
the results of kinetic theory could be understood very sim-
ply in that framework. In particular, he showed that the
coefficients of diffusion and friction are related to each
other by an Einstein relation [13]. Later on, Rosenbluth
et al. [14] proposed a simplified derivation of the coef-
ficients of diffusion and friction for plasmas and stellar
systems and, substituting these expressions in the general
form of the Fokker-Planck equation, they obtained a ki-
netic equation which is at the basis of the dynamics of
stellar systems. They also provided simplified expressions
of this equation in the case of axial symmetry.

It is interesting to note that the previous authors
did not point out the link with the Landau equation
and that modern textbooks of astrophysics [15] usu-
ally derive the kinetic equation of stellar dynamics from
the Fokker-Planck equation by using the approach of
Chandrasekhar [3] and Rosenbluth et al. [14]. We will see
that we can equivalently obtain the kinetic equation of
stellar dynamics from the Landau equation. This alter-
native derivation can re-inforce the connection between
stellar systems and plasmas. We note, however, an im-
portant difference between stellar dynamics and plasma
physics. Neutral plasmas are usually spatially homoge-
neous due to the Debye shielding. By contrast, stellar sys-
tems are inhomogeneous. Therefore, the above-mentioned
kinetic theories developed in astrophysics rely on a lo-
cal approximation. The collision term is calculated as if
the system were homogeneous or as if the collisions could
be treated as local. Then, the effect of inhomogeneity is
taken into account in the kinetic equation by introduc-
ing an advective term (Vlasov term) in the left hand side
which describes the evolution of the system due to mean-
field effects. The local approximation is supported by the
stochastic approach of Chandrasekhar and Von Neumann
[9] showing the preponderance of the nearest neighbor.
However, this remains a simplifying assumption which is
not easily controllable. It is likely that the logarithmic di-

vergence at large scales comes from this approximation.
More recently, Kandrup [16] derived a generalized Lan-
dau equation by using projection operator technics. This
formal approach is interesting because it can take into ac-
count effects of spatial inhomogeneity and memory which
are neglected in the previous approaches1. It clearly shows
which approximations are needed in order to recover the
Landau equation. However, the generalized Landau equa-
tion remains extremely complicated for practical purposes.

Until now, the kinetic theories of systems with long-
range interactions have been essentially developed for 3D
systems with Coulombian or Newtonian potential. The
main object of this paper is to extend these theories to
other dimensions of space d = 2 and d = 1 and for a wide
class of potentials of interaction. This generalization has
been initiated in Chavanis [21,22]. It is shown that for sys-
tems with weak long-range interactions, the Landau and
Lenard-Balescu equations describe the collisional dynam-
ics of the system to order 1/N in a proper thermodynamic
limit N → +∞. Therefore, the collisional relaxation time
scales in general as tR ∼ NtD, where tD is the dynamical
time. For N → +∞ or t� tR, the collision term is negli-
gible and we obtain the (mean-field) Vlasov equation. In
reference [22], we have introduced a Fokker-Planck equa-
tion which describes the evolution of a test particle in a
bath of field particles. We have obtained analytical expres-
sions of the diffusion coefficient and friction force in the
case of a Maxwellian distribution of field particles (ther-
mal bath). We shall obtain here generalizations of these
results.

In the case of a Newtonian or Coulombian potential of
interaction in d = 2 the diffusion coefficient diverges lin-
early at large scales so that an upper cut-off (related to the
Debye length in the case of a plasma) must be introduced.
We have suggested in [22] that this divergence would be
removed if we use the Lenard-Balescu kinetic equation
taking into account collective effects as in the 3D case.
This point will be further explored in the present paper.
The kinetic theory of Coulombian interactions in d = 2
has been studied independently by Benedetti et al. [23]
using a different approach. They calculated the friction
force experienced by a test particle by considering the ef-
fect of a succession of binary encounters. The calculations
are difficult because they involve the differential cross sec-
tion which has not an explicit form in d = 2. They however

1 Memory effects can be important for gravitating systems
because the temporal correlation function of the force decreases
algebraically as t−1 [17]. However, this slow decay mainly re-
sults in logarithmic divergences of the diffusion coefficient [18],
so that the Landau equation can still be used successfully. Fur-
thermore, as shown in Saslaw [5], non-Markovian effects are
important for long-range collisions but not for short-range col-
lisions. Since long-range collisions are more gentle than short-
range collisions, memory effects are somehow ‘washed-out’ in
the complete collision process. Memory effects can be impor-
tant for other systems with long-range interactions, like the
HMF model (see below), close to the critical point Tc because
the timescale of the exponential decay of the correlation func-
tion diverges as T → Tc [19–22].
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managed to obtain asymptotic results for small and large
velocities in the case where the distribution of the field
particles is a step function. Our approach, based on the
Landau or Lenard-Balescu equation in d = 2, does not re-
quire the expression of the differential cross section, just
the Fourier transform of the potential of interaction. In
this paper, we will calculate the diffusion coefficient and
the friction force in the case where the distribution of the
field particles is a step function and obtain results that are
compatible and extend those of [23]. We will also discuss
the stochastic properties of the fluctuating force created
by a 2D Coulombian system by making a parallel with the
approach of Chandrasekhar and von Neumann [9] for the
gravitational force in d = 3.

In d = 1, the Landau and Lenard-Balescu collision
terms cancel out indicating that the collisional evolution
of the system as a whole is due to higher order correlations
in the 1/N expansion [22]. However, if we use this kinetic
theory to describe the evolution of a test particle in a bath
of field particles with any (stable) steady distribution of
the Vlasov equation, we obtain a Fokker-Planck equation
in which the diffusion coefficient and friction force can be
easily calculated. This type of Fokker-Planck equations
has been studied in [19,20,24,25] in connection with the
HMF model. A kinetic theory of the HMF model has been
developed in Bouchet [19] and Bouchet and Dauxois [24]
by analyzing the stochastic process of fluctuations and
calculating the first and second moments of the velocity
increment 〈∆v〉 and 〈(∆v)2〉. This is a particular case,
for a cosine potential of interaction in one dimension, of
the general Fokker-Planck approach developed in plasma
physics (see Chap. 8 of Ichimaru [26]). These authors used
this kinetic theory to determine the velocity correlation
function and found an algebraic decay (see also [27,28])
which is consistent with direct numerical simulations of
the N -body system. A kinetic theory of the HMF model
was developed independently by Chavanis (see discussion
in [20]) by using the projection operator formalism. This
approach does not take into account collective effects but
these terms can be obtained from the Lenard-Balescu the-
ory [22]. Chavanis and Lemou [25] used this kinetic theory
to study the relaxation of the distribution function tail
and showed that it has a front structure and a slow (loga-
rithimic) evolution. Non-ideal effects in the kinetic theory
(non-Markovianity, spatial inhomogeneity,...) have been
further discussed in [29,30]. In the present paper, we shall
develop a kinetic theory of homogeneous one-dimensional
systems with an arbitrary form of weak long-range po-
tential of interaction, starting directly from the general
Fokker-Planck equation given in [22], which takes into ac-
count collective effects. We shall determine the diffusion
coefficient and analyze the effects of a mass distribution
among the particles.

We note finally that kinetic theories of systems with
long-range interactions have also been developed for
point vortices in two-dimensional hydrodynamics and non-
neutral plasmas confined by a magnetic field. Their form
is related to, but different from, the Landau and Lenard-
Balescu equations. The intrinsic reason is that point vor-

tices do not have inertia contrary to electric charges and
stars. Hence, the coordinates x and y are canonically con-
jugate. Kinetic equations have been derived independently
by Dubin and O’Neil [31,32] from the Klimontovich ap-
proach and by Chavanis [33] from projection operator
technics. On the other hand, by using an analogy with
stellar dynamics and Brownian theory, a Fokker-Planck
equation describing the stochastic evolution of a test vor-
tex in a bath of field vortices at equilibrium was derived in
Chavanais [33,34]. The diffusion coefficient and the drift
term are related to each other by an appropriate Einstein
relation and they are inversely proportional to the local
shear created by the field vortices. The statistics of the ve-
locity fluctuations arising from a random distribution of
point vortices has been investigated in Chavanis and Sire
[35,36] by using an approach similar to that developed
by Chandrasekhar and von Neumann [9] for the gravita-
tional force. The analogy between stellar systems and 2D
vortices is discussed in [37].

In this paper, we shall complete previous investigations
on the kinetic theory of systems with weak long-range
interactions by developing a general formalism valid for
a large class of potentials of interaction in d dimensions
and for multi-components systems. In Section 2.1, we re-
call the Lenard-Balescu and Landau equations describing
the evolution of the distribution function (DF) of a sys-
tem of particles in interaction. In Section 2.2, we intro-
duce the Fokker-Planck equation describing the evolution
of a test particle immersed in a bath of field particles.
We give the general expressions of the coefficients of dif-
fusion and friction. In Section 2.3, we restrict ourselves
to isotropic distribution functions and derive the simpli-
fied form of the Fokker-Planck equation. We show how its
stationary solutions are related to the distribution of the
bath and we note that the test particle does not in gen-
eral relax towards the distribution of the bath except (i)
if it is Maxwellian (thermal bath); (ii) in d = 1 for single-
species particles. In Section 2.4, we consider the case where
the field particles have a Maxwellian distribution. We find
that the Fokker-Planck equation becomes similar to the
Kramers equation but the diffusion is anisotropic and de-
pends on the velocity of the test particle. The coefficients
of diffusion and friction are related by an Einstein rela-
tion. We derive its general form for a multi-components
system. In Section 2.5, we derive the explicit expression of
the diffusion coefficient of a test particle in a thermal bath
in d = 1, 2, 3. In Section 2.6, we estimate the relaxation
time of the test particle to the Maxwellian distribution
(thermalization) and show that it scales as NtD. We also
investigate the effect of mass segregation on the relaxation
time. Specific applications are given for gravitational sys-
tems and for the HMF model in Section 2.7. In Section 3,
we consider the case d = 3. We show that the results
obtained by Rosenbluth et al. [14] can be alternatively
obtained from the Landau equation. This has not been
noted by the previous authors and this can re-inforce the
connection between plasma physics and stellar dynamics.
As an application of the Rosenbluth potentials, we com-
pute the diffusion coefficient and the friction force in the
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case where the distribution of the bath is a step func-
tion. In Section 4, we consider the case d = 2. We obtain
the general expressions of the diffusion coefficient and fric-
tion force valid for any isotropic distribution of the field
particles in terms of integrals of Bessel functions. As an
illustration, we compute them for the Coulombian inter-
action when the distribution of the bath is a step function
and we obtain results similar to those of [23] up to a factor
2(π−2)/π that may be related to the unknown large scale
cut-off. In Section 4.4, we analyze the statistics of fluctu-
ations of the Coulombian force in d = 2. We show that it
is given by a marginal Gaussian distribution intermediate
between normal and Lévy laws. In particular, it presents
an algebraic tail scaling as ∼F−4. This is analogous to
the distribution of the velocity created by a gas of point
vortices in two-dimensions [35,36]. We also discuss the ori-
gin of the linear divergence of the diffusion coefficient for
Coulombian systems in d = 2 and how this can be cured
by considering collective effects. Finally, in Section 5 we
provide the general form of the Fokker-Planck equation in
d = 1 and give explicit expressions of the diffusion coeffi-
cient and friction force for any (stable) steady distribution
of the bath and in the case where the test particle has not
necessarily the same mass as the field particles.

2 General results

2.1 Evolution of the system as a whole: the Landau
and Lenard-Balescu equations

We consider a system of particles with long-range inter-
actions whose dynamics is described by the Hamiltonian
equations

mi
dri
dt

=
∂H

∂vi
, mi

dvi
dt

= −∂H
∂ri

, (1)

where

H =
N∑

i

mi
v2
i

2
+

∑

i<j

γiγju(ri − rj), (2)

where uij = u(ri − rj) is a binary potential of inter-
action depending only on the absolute distance between
particles. We assume that there exists X species of par-
ticles {mi, γi}i=1,X and we denote fi(r,v, t) the distri-
bution function of particles of species i normalized such
that

∫
fidrdv = Nimi gives the total mass of particles of

species i. We consider homogeneous systems and we as-
sume that the potential of interaction is long-range and
of weak amplitude. Then, the evolution of the distribu-
tion function of species i is given by the Lenard-Balescu
equation

∂fi
∂t

= π(2π)d
∂

∂vµ

∫
dv′dkkµkν

û(k)2

|ε(k,k · v)|2 δ(k · u)

×
(
γi
mi

)2 ∑

j

(
γj
mj

)2 (
mjf

′
j

∂fi
∂vν

−mifi
∂f ′

j

∂v′ν

)
(3)

with the dielectric function

ε(k, ω) = 1 + (2π)dû(k)
∑

j

(
γj
mj

)2 ∫
k · ∂fj∂v
ω − k · vdv.

(4)

We have introduced the abbreviations fi = fi(v, t) and
f ′
i = fi(v′, t). Furthermore, u = v − v′ is the relative

velocity between two particles. It is also implicitly under-
stood that there is summation over repeated Greek indices
which denote the Cartesian coordinates of the vectors.

For systems with weak long-range interactions, the
Lenard-Balescu equation gives the correction of order 1/N
to the Vlasov equation which is recovered for N → +∞
(for homogeneous systems the Vlasov equation simply re-
duces to ∂f/∂t = 0). The proper thermodynamic limit is
defined in [21,22]. It is such that the amplitude of the po-
tential of interaction scales as u ∼ 1/N (weak coupling)
while the energy per particle E/N , the inverse tempera-
ture β and the volume V are of the order unity. Noting
that u2 ∼ 1/N2 and f ∼ N , we find that the Lenard-
Balescu collision term is of order 1/N , i.e. ∂f/∂t = 1

NQ(f)
with Q(f) ∼ f . In d = 3 and d = 2, it is easy to
show that the Lenard-Balescu equation relaxes toward the
Maxwellian

feqi = Aie
−βmi v22 . (5)

Therefore, finite N effects select the Maxwell distribution
among all possible stationary solutions of the Vlasov equa-
tion. The collisional relaxation time scales as tR ∼ NtD
where tD is a dynamical time (which can be taken of or-
der unity). For Newtonian interactions in d = 3, there is a
logarithmic correction lnΛ ∼ lnN so that the collisional
relaxation time scales as tR ∼ (N/ lnN)tD. Alternatively,
for d = 1, the Lenard-Balescu operator cancels out so that
the collisional evolution is due to terms of higher order in
1/N . This implies that the collisional relaxation time of
the system as a whole scales as tR ∼ N δtD with δ > 1.

If we neglect collective effects and take |ε(k,k·v)|2 = 1
we obtain the Landau equation

∂fi
∂t

= π(2π)d
∂

∂vµ

∫
dv′dkkµkν û(k)2δ(k · u)

×
(
γi
mi

)2 ∑

j

(
γj
mj

)2 (
mjf

′
j

∂fi
∂vν

−mifi
∂f ′

j

∂v′ν

)
(6)

as an approximation of the Lenard-Balescu equation. An
important remark for the following is that the expres-
sion (6) of the Landau equation does not involve the differ-
ential cross section of the interaction, but only the Fourier
transform of the potential2. Furthermore, as discussed af-
ter equation (73), the potential of interaction only fixes the

2 The Fourier transform of the potential is just the Born
approximation to the scattering amplitude. Therefore, the
assumptions that are made to obtain the Landau equation
amount to a first order perturbative approximation for the
elastic two-body differential cross section (I thank one of the
referees for this remark).
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timescale of relaxation so that the structure of the Landau
equation does not depend on the potential. This is a con-
sequence of the fact that the amplitude of the interaction
is very small so that a weak deflection approximation is
appropriate and yields results that are relatively indepen-
dent on the precise form of the potential of interaction.

The Landau equation (6) can be derived from the
Boltzmann [2] or from the Fokker-Planck equation [3,14]
by using a model of binary collisions. The Lenard-Balescu
equation (3) can be obtained from the Liouville equation
by using iterative procedures and diagrammatic methods
[8]. It can also be obtained from the BBGKY hierarchy
[26] or from the Klimontovich equation [38] by using ap-
proximations which amount to neglecting some correla-
tions. This can be justified perturbatively when we con-
sider an expansion of the equations of the problem in terms
of the small parameter ∼1/N (weak coupling limit). These
derivations remain valid for other types of potentials with
weak amplitude and other dimensions of space so that
equations (3) and (6) have a larger domain of validity than
plasma physics and stellar dynamics. These equations will
be the starting point of our analysis.

2.2 Evolution of a test particle in a bath:
the Fokker-Planck equation

We now consider the evolution of a test particle (m, γ)
in a bath of field particles with prescribed distribution
fj(v) for each species (mj , γj). It has been established
in plasma physics (see, e.g. [26]) that the evolution of the
velocity distribution P (v, t) of the test particle is governed
by a Fokker-Planck equation that takes a form similar to
the Lenard-Balescu equation (3) provided that we replace
fj(v′, t) by the prescribed distribution fj(v′) of the bath.
This general Fokker-Planck equation

∂P

∂t
= π(2π)d

∂

∂vµ

∫
dv′dkkµkν

û(k)2

|ε(k,k · v)|2 δ(k · u)

×
( γ
m

)2 ∑

j

(
γj
mj

)2 (
mjf

′
j

∂P

∂vν
−mP

∂f ′
j

∂v′ν

)
, (7)

will be our main object of interest. In the following, in or-
der to simplify the expressions, we shall take γi = mi (like
for the gravitational interaction) but the generalization of
our results for γi �= mi is straightforward. Furthermore,
for d = 3 and d = 2 we shall make the Landau approxima-
tion |ε(k,k · v)|2 = 1 (some results that relax the Landau
approximation are given in [22] for a thermal bath). In
that case, the Fokker-Planck equation for the test particle
becomes

∂P

∂t
=

∂

∂vµ

∑

j

∫
Kµν

(
mjf

′
j

∂P

∂vν
−mP

∂f ′
j

∂v′ν

)
dv′ (8)

where

Kµν = π(2π)d
∫
kµkν û(k)2δ(k · u)dk. (9)

We introduce the diffusion tensor and the friction term:

Dµν =
∑

j

∫
Kµνmjf

′
jdv

′ ≡
∑

j

Dµν(j → 0), (10)

ηµ = −m
∑

j

∫
Kµν

∂f ′
j

∂v′ν
dv′ ≡

∑

j

ηµ(j → 0), (11)

whereDµν(j → 0) and ηµ(j → 0) are the diffusion and the
friction caused by species j on the test particle denoted 0.
With these notations, equation (8) can be rewritten

∂P

∂t
=

∂

∂vµ

[
Dµν ∂P

∂vν
+ Pηµ

]
. (12)

Comparing with the general expression of the Fokker-
Planck equation

∂P

∂t
=

1
2

∂2

∂vµ∂vν

( 〈∆vµ∆vν〉
∆t

P

)
+

∂

∂vµ

( 〈∆vµ〉
∆t

P

)
,

(13)

we find that

〈∆vµ∆vν〉
∆t

= 2Dµν (14)

〈∆vµ〉
∆t

= ηµ − ∂Dµν

∂vν
. (15)

Now, using the fact that Kµν depends only on the relative
velocity u = v − v′ and using an integration by parts, we
get

∂Dµν

∂vν
=

∑

j

∫
∂Kµν

∂vν
mjf

′
jdv

′ =

−
∑

j

∫
∂Kµν

∂v′ν mjf
′
jdv

′ =
∑

j

∫
Kµνmj

∂f ′
j

∂v′ν dv
′. (16)

Therefore, the first moment of the velocity increment can
be rewritten

〈∆vµ〉
∆t

= −
∑

j

∫
Kµν(m+mj)

∂f ′
j

∂v′ν dv
′

= −
∑

j

m+mj

m
ηµ(j → 0). (17)

We note that because of the velocity dependence of the
diffusion tensor, the friction terms 〈∆v〉/∆t and ηηη do not
coincide. In particular, for equal mass particles, there is
a factor 2 between them as noted previously [39]. On the
other hand, if the field particles have a mass mf different
from the mass m of the test particle, the multiplicative
factor is (m + mf )/m. In this respect, we note that the
frictional force 〈Ffr〉 calculated by Kandrup [40] with his
linear response theory is ηηη, not 〈∆v〉/∆t. This explains
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why it differs from the calculation of Chandrasekhar [3]
by a factor (m+mf )/m (see [40], pp. 446). The frictional
force ηηη is an important quantity by itself because it is the
quantity which naturally appears in the symmetrical form
of the Landau-Lenard-Balescu collision term where the
diffusion coefficient is placed between the two derivatives:
∂µD

µν∂ν , see equations (3), (6) and (12).

2.3 The isotropic Fokker-Planck equation

If the distribution function of the field particles is
isotropic, i.e. fj(v) = fj(v), we can write the diffusion
tensor in the form

Dµν =
(
D‖ − 1

d− 1
D⊥

)
vµvν

v2
+

1
d− 1

D⊥δµν , (18)

where D‖(v) and D⊥(v) are the diffusion coefficients in
the directions parallel and perpendicular to the direction
of the test particle v. On the other hand, starting from
equations (10) and (11) and using the same type of calcu-
lation as in equation (16), we find that the friction term
can be generally written

ηµ = −m
∑

j

1
mj

∂

∂vν
Dµν(j → 0). (19)

For an isotropic distribution of the field particles, using
equation (18), we find that the friction term is parallel
to the velocity of the test particle, i.e. ηηη = ηv/v. The
amplitude of the friction vector is given by

η = −m
∑

j

1
mj

[
dD‖
dv

+
d− 1
v

(
D‖ − D⊥

d− 1

)]
(j → 0).

(20)

If the velocity distribution of the test particle is itself
isotropic, i.e. P (v, t) = P (v, t), we can rewrite the Fokker-
Planck equation (12) in the form

∂P

∂t
=

1
vd−1

∂

∂v

[
vd−1

(
D‖

∂P

∂v
+ Pη

)]
(21)

where we have used

Dµνvν = (D‖ − 1
d− 1

D⊥)vµ +
1

d− 1
D⊥vµ = D‖vµ.

(22)

Equation (21) can also be written as

∂P

∂t
=

1
vd−1

∂

∂v

[
vd−1D‖(v)

(
∂P

∂v
+ P

dU

dv

)]
(23)

where we have introduced the effective potential

U(v) =
∫ v η(v′)

D‖(v′)
dv′. (24)

Equation (23) relaxes towards a stationary solution of the
form

P eq(v) = Ae−U(v), (25)

provided that this distribution is normalizable. The evo-
lution of the high velocity tail of the distribution function
that is solution of a Fokker-Planck equation of the general
form (23) has been studied in [25].

Consider single species systems. For d = 2, 3, the only
stationary solution of the Lenard-Balescu equation (3) is
the Maxwellian (5). This implies that the stationary solu-
tion of the Fokker-Planck equation (7) will be equal to the
distribution of the bath f(v) only if this distribution is the
Maxwellian. Otherwise, P eq(v) is not equal to the distri-
bution f(v) of the bath. We shall give an explicit example
in Section 3.3. By contrast, for d = 1, the Lenard-Balescu
operator cancels out for any distribution. This implies that
the stationary solution of the Fokker-Planck equation (7)
is always equal to the distribution of the bath f(v), even
if it is not the Maxwellian (see Sect. 5).

2.4 The Einstein relation for isothermal systems

If the velocity distribution of the field particles is the
Maxwellian (thermal bath)

fj = Aje
−βmj v22 , (26)

then

∂f ′
j

∂v′ν = −βmjf
′
jv

′ν . (27)

Substituting this relation in equation (11) and using the
relation

Kµνv
′ν = Kµν(vν − uν) = Kµνvν , (28)

which results from the identity Kµνuν = 0 (Kµν is the
projector in the direction perpendicular to u), we get

ηµ = βmDµνvν . (29)

This can be viewed as the general expression of the
Einstein relation in our context (this is the most general
relation that equation (12) must satisfy in order to admit
the Maxwell distribution as a stationary state). In that
case, the Fokker-Planck equation (12) can be written in
a form similar to the Kramers equation [41], but with an
anisotropic tensor depending on the velocity of the test
particle:

∂P

∂t
=

∂

∂vµ

[
Dµν(v)

(
∂P

∂vν
+ βmPvν

)]
. (30)

The stationary solution of this equation is the Maxwellian

P eq(v) = Ae−βm
v2
2 . (31)
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Note also that according to equation (22) we have

ηηη = βmD‖v. (32)

Therefore, if we assume that the velocity distribution of
the test particle is isotropic we get

∂P

∂t
=

1
vd−1

∂

∂v

[
vd−1D‖(v)

(
∂P

∂v
+ βmPv

)]
. (33)

If we momentarily neglect the velocity dependence of the
diffusion coefficient, this Fokker-Planck equation can be
obtained from a Langevin stochastic process of the form

dr
dt

= v,
dv
dt

= −ξv +
√

2D‖R(t), (34)

where R(t) is a white noise satisfying 〈R(t)〉 = 0 and
〈Ri(t)Rj(t′)〉 = δijδ(t − t′) and the friction coefficient is
given by the Einstein relation ξ = βmD‖. This relation is
necessary to obtain the Maxwellian distribution at equi-
librium and this is why it is rather independent on the
details of the microscopic model.

As indicated previously, since the diffusion coefficient
depends on the velocity, ηηη is not exactly the friction force
so that equation (32) is not the proper form of Einstein
relation. Using equation (17) we have

〈∆v〉
∆t

= −β
∑

j

(m+mj)D‖(j → 0)v. (35)

If the field particles all have the same mass mf we obtain

〈∆v〉
∆t

= −β(m+mf )D‖v, (36)

so that the proper friction coefficient is

ξ′ = β(m+mf )D‖. (37)

This is the proper form of the Einstein relation in the
present context. Note that it involves the sum of the mass
of the test particle and of the field particles. Using

1
2
mf 〈v2〉f =

d

2
kBT =

d

2β
, (38)

the Einstein relation (37) can be rewritten

〈(∆v‖)2〉
ξ′∆t

=
2
d

mf

m+mf
〈v2〉f . (39)

2.5 The diffusion coefficient for isothermal systems

Inserting the identity

δ(x) =
∫ +∞

−∞
eitx

dt

2π
, (40)

in equation (9) and performing the Fourier transform on
v′ of the Gaussian distribution (26) in equation (10), we

find after another Fourier transform on t that the diffusion
tensor can be expressed as

Dµν = π(2π)d
(
β

2π

)1/2 ∑

j

ρjm
3/2
j

×
∫
dk
kµkν

k
û(k)2e−βmj

(k·v)2

2k2 . (41)

This can be rewritten

Dµν = π(2π)d
(
β

2π

)1/2 ∑

j

ρjm
3/2
j

×
∫ +∞

0

kdû(k)2dk Gµν
(√

βmj

2
v

)
, (42)

where

Gµν(x) =
∫
dk̂ k̂µk̂νe−(k̂·x)2 , (43)

where we have noted k̂ = k/k. In d = 3, introducing
a spherical system of coordinates with the z-axis in the
direction of x, we obtain

Gµν =
(
G‖ − 1

2
G⊥

)
xµxν

x2
+

1
2
G⊥δµν , (44)

with

G‖ =
2π3/2

x
G(x), G⊥ =

2π3/2

x
[Φ(x) −G(x)], (45)

where

G(x) =
2√
π

1
x2

∫ x

0

t2e−t
2
dt =

Φ(x) − xΦ′(x)
2x2

,

(46)

and Φ(x) is the error function

Φ(x) =
2√
π

∫ x

0

e−t
2
dt. (47)

In d = 2, using a polar system of coordinates with the
x-axis in the direction of x, we get

Gµν = (G‖ −G⊥)
xµxν

x2
+G⊥δµν , (48)

with

G‖ = πe−
x2
2

[
I0

(
x2

2

)
− I1

(
x2

2

)]
, (49)

G⊥ = πe−
x2
2

[
I0

(
x2

2

)
+ I1

(
x2

2

)]
. (50)

Finally, in d = 1, we obtain

G(x) = 2e−x
2
. (51)

The diffusion coefficients and friction force are plotted in
Figures 1–3 for different dimensions of space.
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Fig. 1. Diffusion coefficients G‖(x), G⊥(x) and friction force
xG‖(x) for a thermal bath in d = 3.
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Fig. 2. Diffusion coefficients G‖(x), G⊥(x) and friction force
xG‖(x) for a thermal bath in d = 2.

2.6 The relaxation time

We can use the above results to estimate the relaxation
time of the test particle towards the Maxwellian distribu-
tion (thermalization). We consider the relaxation of a test
particle with mass m in a thermal bath of field particles
with massmf . If we set x =

√
βmf/2v, the Fokker-Planck

equation (30) can be rewritten

∂P

∂t
=

1
tR

∂

∂xµ

[
Gµν(x)

(
∂P

∂xν
+ 2

m

mf
Pxν

)]
, (52)

where tR is a reference time given by

1
tR

=
(π

8

)1/2

d3/2(2π)d
ρmf

v3
mf

∫ +∞

0

kdû(k)2dk, (53)
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Fig. 3. Diffusion coefficient G(x) and friction force xG(x) for
a thermal bath in d = 1.

where v2
mf = d/(βmf ) is the mean-squared velocity of the

field particles. Introducing the dimensionless function

η(k) = −(2π)dû(k)βmfρ, (54)

we can rewrite the reference time (53) in the form

1
tR

=
( π

8d

)1/2 vmf
nLd+1

1
(2π)d

∫ +∞

0

κdη(κ/L)2dκ, (55)

where L = V 1/d is the size of the system and κ = kL is
dimensionless (n = ρ/mf is the numerical density of the
field particles). We define a typical dynamical time by

tD =
L

vmf
. (56)

Then, introducing the number N = nLd of field particles,
we can finally write the reference time in the form

tR = CdNtD, (57)

where

C−1
d =

( π

8d

)1/2 1
(2π)d

∫ +∞

0

κdη(κ/L)2dκ, (58)

is a dimensionless number.
We can get an estimate of the relaxation time by the

following argument. If the diffusion coefficient were con-
stant, the typical velocity of the test particle (in one spa-
tial direction) would increase like

1
d
〈(∆v)2〉 ∼ 2D‖t. (59)

The relaxation time tr is the typical time at which the
typical velocity of the test particle has reached its equi-
librium value 〈v2〉(+∞) = d/(mβ) = (mf/m)v2

mf so that
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〈(∆v)2〉(tr) = 〈v2〉(+∞). Since D‖ depends on v, the de-
scription of the diffusion is more complex. However, the
formula

tr =
1
d

mf

m

v2
mf

2D‖(vmf )
, (60)

resulting from the previous arguments with D‖ =
D‖(vmf ) should provide a good estimate of the relax-
ation time. Using equation (42) and comparing with equa-
tion (55) we obtain

tr = Kd
mf

m
tR, (61)

where Kd = 1/[4G‖(
√
d/2)]. We find K3 = 0.13587547...,

K2 = 0.16286327... and K1 = 0.20609016.... We can also
estimate the relaxation time by t′r = ξ−1 where ξ is the
friction coefficient. Using the Einstein relation ξ = D‖βm
with D‖ = D‖(vmf ) we find that

t′r = 2tr. (62)

Combining the previous results we find that the relaxation
time scales as

tr ∼ N
mf

m
tD. (63)

We expect that this result also yields a good estimate of
the relaxation time of a test particle towards the station-
ary distribution (25) in the case of a non-thermal bath. In
that case, we must justify that the DF of the bath does not
change on that interval (see below). We come therefore to
the following conclusions. For equal mass particles, the re-
laxation time of a test particle in a bath scales asNtD. For
d = 2, 3, the relaxation time of the system as a whole also
scales as NtD (see Sect. 2.1). Therefore, a non-thermal
bath will change on this timescale. Only the Maxwellian
distribution is stationary on the timescale NtD. Thus, for
m = mf , the test particle approach can be developed
only for a thermal bath. Now, consider the relaxation of a
test particle with mass m in a bath of field particles with
mass mf . In that case, the relaxation of the test parti-
cle is changed by a factor mf/m. If m
 mf we find that
the relaxation of the test particle (∼(mf/m)NtD) towards
equation (25) is much faster than the relaxation of the
system of field particles as a whole (∼NtD) towards the
Maxwellian feq. Therefore, in that limit, when we focus
on the evolution of a test particle, it is possible to con-
sider that the distribution of the field particles f(v, t) is
“frozen” even if it does not correspond to statistical equi-
librium. This is because f(v, t) evolves much slower than
P (v, t). This remark justifies to consider equations of the
form (7) with f �= feq. In astrophysics, the case m
 mf

could be relevant to describe the stochastic evolution of a
black hole at the center of a galaxy or the dynamics of a
globular cluster (m ∼ 106mf ) passing through a galaxy.
Note that in d = 1 the relaxation of a test particle in a
bath is given by equation (63) while the relaxation of the
field particles as a whole towards statistical equilibrium is
larger than NtD since the Lenard-Balescu collision term

cancels out in d = 1. Therefore, in that case it is justified
to consider the relaxation of a test particle in a bath with
any distribution f(v) (stable with respect to the Vlasov
equation) even if m = mf (see Sect. 5).

2.7 Examples

Let us apply these results to particular systems considered
in [21,22]. For the gravitational interaction in d = 3, the
Fourier transform of the potential is

(2π)3û(k) = −4πG
k2

. (64)

The reference time (53) can be written

tR = 0.482
v3
mf

nm2
fG

2 lnΛ
, (65)

where lnΛ is the Coulombian factor [15]. Using equa-
tions (54) and (64), we get

η(k) =
k2
J

k2
, (66)

where kJ = (4πGβρmf )1/2 is the Jeans wavenumber.
Then, equations (57–58) lead to

tR =
11.3
η2

N

lnΛ
tD, (67)

where we have defined η = βGNm2
f/R with L3 = V =

(4/3)πR3 and we recall that lnΛ ∼ lnN .
For the HMF model in d = 1, we have

ûn = − k

4π
(δn,1 + δn,−1). (68)

The reference time (53) can be written

tR = 40.1
v3
mf

nm2
fk

2
, (69)

where we have replaced
∫ +∞
0

dk by
∑+∞
n=0 in the discrete

case. Using equations (54) and (68), we get

ηn = η(δn,1 + δn,−1), η =
βNm2

fk

4π
. (70)

Then, we obtain

tR =
0.254
η2

NtD. (71)

For the HMF model, the relaxation towards the
Maxwellian is not exponential due to the rapid decay of
the diffusion coefficient [24,25] so that this reference time
only gives a timescale of relaxation.
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3 The case d = 3

3.1 Rosenbluth potentials

In d = 3, it is possible to obtain a simple expression of the
coefficients of diffusion and friction, expressed in terms
of elementary integrals, for any isotropic distribution of
the bath (not only the Maxwellian). To that purpose,
it is useful to introduce the so-called Rosenbluth poten-
tials [14,15,39]. Introducing a spherical system of coordi-
nates with the z-axis in the direction of u, we find after
elementary calculations that equation (9) can be written

Kµν = A3
δµνu2 − uµuν

u3
(72)

where

A3 = 8π5

∫ +∞

0

k3û(k)2dk. (73)

In particular, for the gravitational potential we find that
A3 = 2πG2 lnΛ where lnΛ =

∫ +∞
0

dk/k is the Coulom-
bian factor which has to be regularized with appropriate
cut-offs (see the Introduction). Using equation (72), the
Landau equation (6) can be written for a single species
system

∂f

∂t
= A

∂

∂vµ

∫
δµνu2 − uµuν

u3

(
f ′ ∂f
∂vν

− f
∂f ′

∂v′ν

)
dv′

(74)

with A = 2πG2m lnΛ. Equation (74) is the original form
of the Landau equation (we have used the notations of
astrophysics but the connection with the notations of
plasma physics is obtained by making the substitution
Gm2 ↔ −e2). It applies to weakly coupled systems. We
note that the potential of interaction appears only in the
constant A which merely determines the timescale of re-
laxation. The structure of the Landau equation is inde-
pendent on the potential. Using the identity

∂2u

∂vµ∂vν
=
δµνu2 − uµuν

u3
, (75)

we can write the diffusion tensor (10) in the form

Dµν = A3

∑

j

mj
∂2gj
∂vµ∂vν

(v), (76)

where

g(v) =
∫
f(v′)|v − v′|dv′. (77)

On the other hand, integrating by parts and using the fact
that Kµν depends only on the relative velocity u = v−v′,
the friction term (11) can be written

ηµ = −m
∑

j

∫
∂Kµν

∂vν
f ′
jdv

′. (78)

Using the identity

∂Kµν

∂vν
= −2A3

uµ

u3
= 2A3

∂

∂vµ

(
1
u

)
, (79)

we can rewrite the friction term in the form

ηµ = −2A3m
∑

j

∂hj
∂vµ

(v), (80)

where

h(v) =
∫

f(v′)
|v − v′|dv

′. (81)

The functions g(v) and h(v) are called the Rosenbluth
potentials. Using equations (76) and (80), we can read-
ily check that the first and second moments of the ve-
locity increments given by equations (14) and (17) return
the expressions obtained by Rosenbluth et al. [14] and
that the kinetic equation derived in [14] is equivalent to
equation (74), although written in a different form. There-
fore, we have recovered the kinetic equation of stellar dy-
namics directly from the Landau equation. This shows
that the Landau equation is equivalent to the kinetic
equation derived by Chandrasekhar [3] and Rosenbluth
et al. [14] starting directly from the Fokker-Planck equa-
tion and evaluating the first and second moments of the
velocity increments by considering a succession of binary
encounters. This was expected because the Landau equa-
tion carries the same type of assumptions. However, it is
surprising that the relation to the Landau equation was
not mentioned in [3,14,15]. In particular, these authors
write the Fokker-Planck equation in the form (13) with the
diffusion coefficient in the second derivative (∂µ∂νDµν)
while a more symmetric form is the Landau equation (74)
where the diffusion coefficient is inserted between the first
derivatives (∂µDµν∂ν), see equation (12). It is interesting
to note, for historical reasons, that this symmetric form
(from which we immediately deduce all the conservation
laws of the system and the H-theorem [4]) has escaped to
the study of stellar dynamicists [3,14,15] while the Lan-
dau equation was known long before in plasma physics.

3.2 Diffusion and friction

We shall see that the Rosenbluth potentials can be eas-
ily calculated in d = 3 when the field particles have an
isotropic velocity distribution. The results of the previous
section remain valid in d = 2 provided that we replace A3

by A2 defined in equation (122). However, the calculation
of the Rosenbluth potentials is apparently more compli-
cated in d = 2 than in d = 3 and this is why we shall
use another method in d = 2 to obtain the diffusion and
friction coefficients (see Sect. 4.1).

If the field particles have an isotropic velocity distri-
bution, the Rosenbluth potentials in d = 3 take the par-
ticularly simple form [14,15,39]:

h(v) = 4π
[
1
v

∫ v

0

f(v1)v2
1dv1 +

∫ +∞

v

f(v1)v1dv1

]
, (82)
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g(v) =
4πv
3

[∫ v

0

(
3v2

1 +
v4
1

v2

)
f(v1)dv1

+
∫ +∞

v

(
3v3

1

v
+ vv1

)
f(v1)dv1

]
. (83)

Furthermore, when g = g(v) the diffusion tensor (76) can
be put in the form of equation (18) with

D‖ = A3

∑

j

mj
d2gj
dv2

, (84)

D⊥ = 2A3

∑

j

mj
1
v

dgj
dv

. (85)

Using equation (83) we obtain

D‖ =
8π
3
A3

∑

j

mj
1
v

[∫ v

0

v4
1

v2
fj(v1)dv1

+v
∫ +∞

v

v1fj(v1)dv1

]
, (86)

D⊥ =
8π
3
A3

∑

j

mj
1
v

[∫ v

0

(
3v2

1 − v4
1

v2

)
fj(v1)dv1

+2v
∫ +∞

v

v1fj(v1)dv1

]
. (87)

On the other hand, when h = h(v) the friction term (80)
can be written

ηηη = −2A3m
∑

j

1
v

dhj
dv

v. (88)

Using equation (82) we obtain

ηηη = 8πA3m
v
v3

∑

j

∫ v

0

fj(v1)v2
1dv1. (89)

We note that these expressions are valid for any isotropic
distribution of the field particles. If we substitute equa-
tions (86) and (89) into equation (21), we get the Fokker-
Planck equation describing the evolution of a test particle
in a bath with prescribed distribution fj(v). Alternatively,
if we come back to the original Landau kinetic equation
(6), assume an isotropic velocity distribution and sub-
stitute the general expressions (86) and (89) with now
fj = fj(v, t) we obtain the integro-differential equation

∂fi
∂t

= 8πA3

∑

j

1
v2

∂

∂v

[
mj

3
∂fi
∂v

(
1
v

∫ v

0

v4
1fj(v1, t)dv1

+ v2

∫ +∞

v

v1fj(v1, t)dv1

)
+mifi

∫ v

0

fj(v1, t)v2
1dv1

]
,

(90)

describing the evolution of the system as a whole.
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Fig. 4. Diffusion coefficients D‖(v)/D∗, D⊥(v)/D∗ and fric-
tion force η(v)/η∗ as a function of v/v0 for a water-bag dis-
tribution of the bath in d = 3. The normalization factors are
D∗ = 4π

3
A3mfη0v

2
0 and η∗ = 8π

3
A3mη0v0.

3.3 Water-bag distribution

As an illustration of the previous formalism, we shall com-
pute the diffusion coefficient and friction force of a test
particle with mass m when the distribution function of
the bath (composed of particles with mass mf ) is a step
function: f(v) = η0 for v ≤ v0 and f(v) = 0 for v > v0
with η0 = 3ρ/(4πv3

0) (ρ is the mass density of the field
particles). Using equations (86), (87) and (89) we get for
v ≤ v0:

D‖ =
4π
3
A3mfη0

(
v2
0 − 3

5
v2

)
, (91)

D⊥ =
8π
3
A3mfη0

(
v2
0 − v2

5

)
, (92)

η =
8π
3
A3mη0v, (93)

and for v > v0:

D‖ =
8π
15
A3mfη0v

5
0

1
v3
, (94)

D⊥ =
8π
3
A3mfη0

1
v

(
v3
0 − v5

0

5v2

)
, (95)

η =
8π
3
A3mη0

v3
0

v2
. (96)

These quantities are plotted in Figure 4. We note that the
friction term and the diffusion coefficient in the direction
parallel to the direction of the test particle are related to
each other by

η =
2mD‖

mf (v2
0 − 3

5v
2)
v, (v ≤ v0), (97)

η =
5mD‖
mfv2

0

v, (v > v0). (98)
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These expressions can be compared to the Einstein re-
lation (32). We note that the role of the temperature is
played here by mfv

2
0 .

Substituting these relations in equation (24) we get a
Fokker-Planck equation (23) with an effective potential

U(v) =
5
3
m

mf

[
3
2
− ln

(
5
2
− 3

2
v2

v2
0

)]
, (v ≤ v0), (99)

U(v) =
5
2
m

mf

v2

v2
0

, (v > v0). (100)

The stationary solution of the Fokker-Planck equation is

P eq(v) = Ae
− 5

2
m
mf

(
5
2
− 3

2
v2

v2
0

) 5m
3mf

(v ≤ v0) (101)

P eq(v) = Ae
− 5

2
m
mf

(
v
v0

)2

(v > v0) (102)

where A is a normalization constant. We explicitly check
on this example that the stationary velocity distribu-
tion of the test particle is different from that of the
bath. As explained at the end of Section 2.6, this is
just a quasi-stationary distribution valid on a timescale
(mf/m)NtD � NtD for m 
 mf because on longer
timescales (∼NtD) the bath distribution will change.

We can also compute the diffusion coefficient and the
friction force from equations (86), (87) and (89) for a
Maxwellian velocity distribution of the field particles. In
that case, we directly check that the Einstein relation (32)
holds and that the diffusion coefficients are given by equa-
tions (45) and (46). For comparison with the water-bag
model, we give below the asymptotic expressions of the
diffusion coefficient and friction force for a thermal bath.
For v → +∞, we have

D‖ = 2A3
ρ

β

1
v3
, (103)

D⊥ = 2A3ρmf
1
v
, (104)

η = 2A3ρm
1
v2
. (105)

For v → 0, we get

D‖ =
4
3
A3

(
β

2π

)1/2

ρm
3/2
f

(
1 − 3

10
βmfv

2 + ...

)
,

(106)

D⊥ =
8
3
A3

(
β

2π

)1/2

ρm
3/2
f

(
1 − 1

10
βmfv

2 + ...

)
,

(107)

η =
4
3
A3

(
β

2π

)1/2

ρm
3/2
f βmv. (108)

Interestingly, these are the same asymptotic behaviors
(same scaling) as in the water-bag model. For recent stud-
ies concerning the motion of a “test particle” in a thermal
bath in relation with space plasmas, and for some numeri-
cal solutions of the corresponding Fokker-Planck equation
see, e.g., Shizgal [42] and references therein.

4 The case d = 2

4.1 General expressions

We shall provide here general expressions of the diffusion
coefficient and friction force in d = 2 for any isotropic
velocity distribution of the field particles. We shall use a
method different from that exposed in Section 3 for d = 3.
The following method also works in d = 3 as shown in
Appendix A.

Using equation (9), the diffusion coefficient (10) can
be written

Dµν = π(2π)d
∑

j

mj

∫
dkdv′kµkν û(k)2δ(k · u)fj(v′).

(109)
Inserting the identity (40) in equation (109), we get

Dµν = (2π)2d
∑

j

mj

∫ +∞

0

dt

∫
dkkµkν û(k)2eik·vtf̂j(kt),

(110)
where we have introduced the Fourier transform

f̂(k) =
∫
f(x)e−ik·x

dx
(2π)d

. (111)

For an isotropic velocity distribution, f̂(k) = Φ(k) de-
pends only on the modulus of k (see the explicit expression
below). Setting τ = kt we finally obtain

Dµν = (2π)2d
∑

j

mj

∫ +∞

0

dτ

∫
dk
kµkν

k
û(k)2eik̂·vτΦj(τ)

(112)
where k̂ = k/k. This expression is valid in d dimensions.
We now specialize on the case d = 2. Introducing polar
coordinates with the x-axis in the direction of v and using
the identities

∫ 2π

0

eix cos θdθ = 2πJ0(x), (113)
∫ 2π

0

eix cos θ sin2 θdθ = 2π
J1(x)
x

, (114)

we find that Dµν is given by equation (18) with

D‖ = (2π)5
∑

j

mj
1
v

∫ +∞

0

k2û(k)2dk

×
∫ +∞

0

dx

[
J0(x) − J1(x)

x

]
Φj

(x
v

)
, (115)
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D⊥ = (2π)5
∑

j

mj
1
v

∫ +∞

0

k2û(k)2dk

×
∫ +∞

0

dx
J1(x)
x

Φj

(x
v

)
. (116)

Now, in d = 2,

Φ(k) =
1
2π

∫ +∞

0

f(v1)J0(kv1)v1dv1. (117)

Substituting this expression in equations (115) and (116)
and introducing the notations

I‖(λ) =
∫ +∞

0

[
J0(x) − J1(x)

x

]
J0(λx)dx, (118)

I⊥(λ) =
∫ +∞

0

J1(x)
x

J0(λx)dx, (119)

we obtain

D‖ = 2πA2

∑

j

mj
1
v

∫ +∞

0

fj(v1)I‖
(v1
v

)
v1dv1, (120)

D⊥ = 2πA2

∑

j

mj
1
v

∫ +∞

0

fj(v1)I⊥
(v1
v

)
v1dv1,(121)

where

A2 = 8π3

∫ +∞

0

k2û(k)2dk. (122)

Finally, the friction is given by equation (20). Note that
these expressions are valid for an arbitrary isotropic veloc-
ity distribution of the field particles. They remain true if
the distribution function depends on time. Therefore, by
substituting these results in the Landau equation (6) we
obtain a self-consistent kinetic equation for an isotropic
distribution function f(v, t) which is the counterpart in
d = 2 of equation (90) in d = 3. However, because it in-
volves complicated functions (118) and (119), its expres-
sion is less explicit.

4.2 Water-bag distribution

The previous relations are quite general. Let us now con-
sider for illustration the case where the distribution func-
tion of the field particles (with mass mf ) is a step func-
tion: f(v) = η0 for v ≤ v0 and f(v) = 0 for v > v0 where
η0 = ρ/(πv2

0). Using the identity

xJ0(x) = [xJ1(x)]′, (123)

the Fourier transform (117) of the distribution function is

Φ(ξ) =
η0v0
2πξ

J1(ξv0). (124)

Inserting this expression in equations (115) and (116), we
obtain

D‖ = 2πA2mfη0v0R‖
(v0
v

)
, (125)

D⊥ = 2πA2mfη0v0R⊥
(v0
v

)
, (126)

where we have introduced the functions

R‖(λ) =
∫ +∞

0

dx

[
J0(x) − J1(x)

x

]
1
x
J1(λx), (127)

R⊥(λ) =
∫ +∞

0

dx
J1(x)
x2

J1(λx). (128)

Using equation (20), the friction term is given by

η = − m

mf

[
dD‖
dv

+
1
v

(
D‖ −D⊥

)]
. (129)

The integrals (127) and (128) can be expressed in terms
of hypergeometric functions. Their asymptotic behaviors
are derived in Appendix B. Using these results, we obtain
the asymptotic behaviors of the diffusion coefficients and
friction force. For v → +∞, we get

D‖ =
1
4
πA2mfη0v

4
0

1
v3
, (130)

D⊥ = πA2mfη0v
2
0

1
v
, (131)

η = πA2mη0v
2
0

1
v2
. (132)

We note that the leading term ∼v−2 of the friction η is
due to the diffusion in the direction perpendicular to the
velocity of the test particle, i.e. the term D⊥ in equa-
tion (129). The contribution of the diffusion coefficient in
the direction parallel to the velocity of the test particle
decreases more rapidly like v−4. For v → 0, we get

D‖ = πA2mfη0v0

[
1 − 3

8

(
v

v0

)2

+ ...

]
, (133)

D⊥ = πA2mfη0v0

[
1 − 1

8

(
v

v0

)2

+ ...

]
, (134)

η = πmA2η0
v

v0
. (135)

On the other hand, using equations (129) and (219), we
find that the friction coefficient diverges for v → v0 like

η = 2A2mη0(2 − 2γ − ln 2 − 2ψ(3/2)− ln |1 − v/v0|).
(136)

The diffusion coefficients and friction force for a water-bag
distribution of the bath are plotted in Figure 5.
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Fig. 5. Diffusion coefficients D‖(v)/D∗, D⊥(v)/D∗ and fric-
tion force η(v)/η∗ as a function of v/v0 for a water bag dis-
tribution of the bath in d = 2. The normalization factors are
D∗ = 2πA2mfη0v0 and η∗ = (m/mf )(D∗/v0).

We can also use the previous formalism in the case
where the distribution of the bath is Maxwellian (thermal
bath), in which case

Φi(ξ) =
ρi

(2π)2
e
− ξ2

2βmi . (137)

Substituting this expression in equations (115) and (116)
and carrying out the integrations, we can show that they
return the results (49) and (50) obtained by a different
method. For comparison with the water-bag model, we
give below the asymptotic expressions of the diffusion coef-
ficient and friction force for a thermal bath. For v → +∞,
we have

D‖ = A2
ρ

β

1
v3
, (138)

D⊥ = A2ρmf
1
v
, (139)

η = A2ρm
1
v2
. (140)

For v → 0, we get

D‖ =
π

2
A2

(
β

2π

)1/2

ρm
3/2
f

(
1 − 3

8
βmfv

2 + ...

)
,

(141)

D⊥ =
π

2
A2

(
β

2π

)1/2

ρm
3/2
f

(
1 − 1

8
βmfv

2 + ...

)
,

(142)

η =
π

2
A2

(
β

2π

)1/2

ρm
3/2
f βmv. (143)

Interestingly, these are the same asymptotic behaviors
(same scaling) as in the water-bag model. This is also the
case in d = 3 (see Sect. 3).

4.3 Example: Coulombian plasma

In a recent paper, Benedetti et al. [23] have considered a
2D model of Coulomb oscillators interacting via a poten-
tial of the form

uij = − ξ

N
ln |ri − rj |. (144)

They have calculated the friction force K = 〈(∆v)〉/∆t ex-
perienced by a test particle by evaluating the average vari-
ation of the velocity caused by a succession of binary en-
counters. The calculations are relatively difficult because
the explicit expression of the differential cross section for
a Coulombian interaction is not known in d = 2. We shall
reconsider this problem with our approach based on the
Landau or Lenard-Balescu equation which does not re-
quire the explicit expression of the differential cross sec-
tion, but only the Fourier transform of the potential of
interaction. As noted after equation (74), for weakly in-
teracting systems, the form of potential just determines
the timescale of relaxation through the constant A.

First, we note that in d = 2 the potential (144) is
solution of the differential equation

∆u = −2πξ
N

δ(r). (145)

This immediately leads to

(2π)2û(k) =
2πξ
Nk2

. (146)

Using equation (146), we find that the constant (122) is
given by

A2 =
2πξ2

N2
Λ (147)

where

Λ =
∫ +∞

0

dk

k2
. (148)

We note that for a Coulombian potential in d = 2, the
Coulomb factor Λ diverges linearly with the distance for
λ = 2π/k → +∞. This contrasts from the 3D case where
the divergence is only logarithmic. In paper [22], we have
suggested that this divergence would be cured (as in the
3D case) by using the complete form of the Lenard-Balescu
equation including the collective effects encapsulated in
the dielectric function. These calculations are completed
in Appendix C. However, in a first approach, we shall ne-
glect collective effects and argue phenomenologically that
Λ should scale like the Debye length in 2D. Note that there
can be a numerical factor between Λ and the Debye length
so that our approach will only provide an estimate of the
diffusion coefficient.

If we specialize on the case where the distribution of
the bath is a step function, we can use the results of Sec-
tion 4.2 with

η0 =
N

(2π)2kBTR2
, v0 = 2

√
kBT , (149)
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Fig. 6. Friction force as a function of the velocity for an
isothermal distribution of the bath (theoretical curve obtained
with our approach). For comparison, we have adopted the same
normalization as in [23].

where, following [23], we have introduced a typical ra-
dius via ρ = N/(πR2) and defined the “temperature” via
〈v2〉 = 2kBT (we have taken m = 1). Recalling that for
identical particles the friction force is given by K = 2η
and using the asymptotic results (132) and (135), we get
for v → +∞:

K = 4
ξ2

NR2
Λ

1
v2
, (150)

and for v → 0:

K =
1
2

ξ2

NR2

Λ

(kBT )3/2
v. (151)

These asymptotic results agree with those obtained by
Benedetti et al. [23] with a different method, up to a fac-
tor 2(π − 2)/π  0.727.... Owing to the remark following
equation (148), we should not give too much credit on the
exact value of the numerical constant (see Appendix C
for a more precise determination of the value of Λ). How-
ever, it would be important in future works to determine
whether our approach and that of [23] are really equivalent
or not.

We emphasize that our approach provides the expres-
sion of the diffusion tensor Dµν and friction force ηµ for
any value of the velocity; these quantities have not been
calculated in [23]. When the distribution of the field par-
ticles is Maxwellian (thermal bath), they are given by the
analytical formulae (49) and (50) obtained in [22]. The
friction force obtained from equation (32) is plotted as
a function of the velocity in Figure 6. We have multi-
plied our expression by the factor 2(π−2)/π. In that case,
our analytical formula of K matches remarkably well, in
the whole range of velocities, the curve obtained numeri-
cally by [23]. For a water-bag distribution of the bath, the
diffusion coefficients and friction force can be expressed

0 1 2 3 4
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2.5
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7.5
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N
K

Fig. 7. Friction force as a function of the velocity when the
distribution of the bath is a step function (theoretical curve
obtained with our approach). For comparison, we have adopted
the same normalization as in [23]. For N → +∞, the friction
force diverges logarithmically at the velocity v0.

in terms of integrals of Bessel functions (125)–(129) or,
equivalently, in terms of Hypergeometric functions using
equations (211), (212) and (218). The friction force ob-
tained from equation (129) is plotted as a function of the
velocity in Figure 7. Again, we have multiplied our ex-
pression by the factor 2(π − 2)/π and we get an excellent
agreement with the numerical results of [23]. We note that
in our approach valid for N → +∞, the friction force di-
verges for v → v0. Using equation (136), we find that the
divergence is like

K ∼ 2
ξ2

NR2

Λ

kBT

(
a− b ln

∣∣∣∣1 − v

2
√
kBT

∣∣∣∣

)
, (152)

where a = (2 − 2γ − ln 2 − 2ψ(3/2))/π  0.025287 and
b = 1/π  0.3183. This behavior is consistent with the
results of [23] who obtain the K − v curve from N -body
simulations and find that the maximum velocity increases
as N increases. For finite N systems, there is no singu-
larity. The singularity appears for N → +∞. Formally,
the curve of Figure 7 and the divergence of the friction
force at v = v0 when N → +∞ share some analogies with
the divergence of the specific heats in second order phase
transitions (e.g., the curve of Fig. 7 looks similar to the
λ-transition in superfluid helium).

4.4 Statistics of fluctuations

In order to better understand the previous results, and in
particular the linear divergence of the diffusion coefficient,
we can analyze the statistics of fluctuations of the force
produced by a random distribution of charges in d = 2.
The force created by the charges at some point of origin
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is given by

F =
N∑

i=1

ξ

N

ri
r2i
. (153)

We shall assume that the charges are randomly distributed
with uniform distribution. In that case, the force F fluc-
tuates and we have to determine its distribution W (F).
Formally, this mathematical problem is the same as the
one considered by Chavanis and Sire [35] in their investiga-
tion of the statistics of the fluctuations of velocity V cre-
ated by a random distribution of point vortices in d = 2.
Therefore, we can apply their results just by making the
substitution F ↔ V (we also note that to leading order
〈F 2〉 ∼ N × (1/N2) ∼ 1/N so that the proper scaled vari-
able is x = FN1/2). To have exactly the same notations,
we set ξ/N = γ/(2π). It is shown in [35] that the distri-
bution of F is a marginal Gaussian distribution

W (F) =
4

nγ2 lnN
e
− 4π
nγ2 lnN

F 2

(F � Fcrit(N)),

(154)

W (F) =
nγ2

4π2F 4
(F 
 Fcrit(N)), (155)

Fcrit(N) ∼
(
nγ2

4π
lnN

)1/2

ln1/2(lnN), (156)

where n is the spatial distribution of the particles assumed
to be homogeneous. This distribution is intermediate be-
tween Normal and Lévy laws: the core of the distribu-
tion is Gaussian but the tail decreases algebraically as
F−4. It is dominated by the contribution of the nearest
neighbor [35]. Note that the variance of the scaled variable
x = FN1/2 diverges logarithmically with N since

〈F 2〉 =
nγ2

4π
lnN. (157)

Analytical results for the spatial correlations of the force
are derived in [36]. Here, we shall concentrate on the basics
in order to make the connection with the kinetic theory
developed previously. If we neglect collective effects, the
spatial correlation function of the force can be written (see
Eq. (100) of Ref. [21]):

〈F(0) ·F(r)〉 = (2π)2n
∫
k2û(k)2e−ik·rdk. (158)

Introducing a polar system of coordinates with the x axis
in the direction of r, using (2π)2û(k) = γ/k2 and intro-
ducing a large scale cut-off Λ, we obtain

〈F(0) ·F(r)〉 =
nγ2

2π

∫ +∞

1/Λ

J0(kr)
k

dk, (159)

which behaves like

〈F(0) · F(r)〉  nγ2

2π
ln

(
Λ

r

)
, (160)

for r/Λ → 0. An alternative derivation of this result is
given in reference [36], Appendix D. In particular, we find
that the correlation function diverges logarithmically for
r → 0, in agreement with the result (157) [note that in
d = 2 the length scales as L ∼ (N/n)1/2 which yields the
factor 1

2 lnN ]. We shall now see how collective effects can
remove this logarithmic divergence. The expression (158)
neglects the correlations between particles. Now, applying
equation (51) of reference [21] to the present context, it is
found that the spatial correlation function is solution of
the differential equation

∆h− k2
Dh = βγδ(x), (161)

where kD = (βnγ)1/2 is the Debye wavenumber. The spa-
tial correlation is then given by

h(x) = −βγ
2π
K0(kDx), (162)

which is the Debye-Hückel result in 2D. The Fourier trans-
form of the correlation function can be written

(2π)2nĥ(k) = − k2
D

k2 + k2
D

, (163)

and the correlational energy (see Eq. (57) of paper [21])
can be written Wc = −nγV/(4π)[γE+(1/2) ln(βnγ)−ln 2]
where γE = 0.577... is the Euler constant. If we account
for collective effects in the computation of the force auto-
correlation function, we obtain (see Eq. (96) of Ref. [21]):

〈F(0) · F(r)〉 = (2π)2n
∫

k2û(k)2

1 + (2π)2βnû(k)
e−ik·rdk,

(164)
where the new terms arise because of the correlations en-
capsulated in the function ĥ(k). Thus, combining the pre-
vious results, we get

〈F(0) · F(r)〉 =
nγ2

2π

∫ +∞

0

J0(kr)
k

k2

k2 + k2
D

dk, (165)

where there is no need to introduce an ad hoc large-scale
cut-off anymore. We now obtain the result

〈F(0) · F(r)〉 =
nγ2

2π
K0(kDr). (166)

For kDr → 0, we recover equation (160) with Λ = k−1
D .

Therefore, the divergence in equation (159) can be regu-
larized by properly accounting for correlations among the
particles. For comparison, the spatial correlation of the
force in 3D within the mean-field Debye-Hückel theory is

〈F(0) · F(r)〉 = nγ2

∫ +∞

0

sin(kr)
kr

k2

k2 + k2
D

dk

=
π

2
nγ2 1

r
e−kDr, (167)

where kD = (4πβne2)1/2 is the Debye shielding length in
d = 3. Note that the integral remains well-behaved if we
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neglect collective effects (kD = 0) contrary to the case
d = 2. On the other hand, the fact that the correlation
function diverges as 1/r for r → 0 is due to the fact that
the distribution W (F) is a particular Lévy law, called the
Holtzmark distribution, whose variance is infinite [9].

Let us now consider the temporal correlations of the
force. If we neglect collective effects, the correlation func-
tion is given by (see Eq. (93) of Ref. [22]):

〈F(0) · F(t)〉 = (2π)2n
∫
k2û(k)2e−ik·vte−k

2t2/(2β)dk.

(168)
Using the same procedure as before, we get

〈F(0) ·F(t)〉 =
nγ2

2π

∫ +∞

vt/Λ

J0(x)
x

e−x
2/(2βv2)dx, (169)

which behaves like

〈F(0) · F(t)〉 =
nγ2

2π
ln

(
Λ

vt

)
, (170)

for vt/Λ → 0. The previous expression indicates that the
correlation of the force is almost independent of time. This
implies that the diffusion coefficient, calculated with the
Kubo formula

D =
∫ +∞

0

〈F(0) ·F(t)〉dt ∼
∫ +∞

0

dt, (171)

diverges linearly with time. This temporal divergence is
the analogue of the spatial divergence Λ ∼ ∫ +∞

0
dλ ob-

tained in the kinetic approach of Section 4.3. The same
effect occurs for gravitational systems in d = 3 where the
logarithmic divergence of the diffusion coefficient can be
viewed either as a spatial ∼∫

dk/k or temporal
∫
dt/t di-

vergence (see Sect. 2.9 of [22]). Now, if we take into ac-
count collective effects, the temporal correlation function
is given by (see Eq. (98) of Ref. [22]):

〈F(0) · F(t)〉 = (2π)2
∫

k2û(k)2

|ε(k,k · v1)|2 e
ik·utf(v1)dv1dk.

(172)
By investigating the poles of the integrand (for a
Maxwellian distribution), it is found that the contribu-
tion of each mode k should decay with time exponentially
rapidly (modulated by an oscillatory factor) with an expo-
nent γk corresponding to the Landau damping rate. This
is the imaginary part of the pulsation ω which cancels out
the dielectric function ε(k, ω). Therefore, collective effects
modify the expression of the temporal correlation function
and, consequently, of the diffusion coefficient. Indeed, ac-
cording to the Kubo formula, the diffusion coefficient en-
tering in the Lenard-Balescu equation

Dµν = π(2π)2
∫
dv1dkkµkν

û(k)2

|ε(k,k · v1)|2 δ(k · u)f(v1),

(173)
is the time integral of the correlation function
〈Fµ(0)F ν(t)〉. When the dielectric function is taken into

account, it is seen that the integrals on k in equation (173)
are now convergent (see discussion in Sec. 2.8.1 of refer-
ence [22]). By these means, we can provide a justification
of the upper cut-off which appears in equation (148). The
calculations are detailed in Appendix C.

5 The case d = 1

For d = 1, the Fokker-Planck equation (7) reduces to

∂P

∂t
= (2π)2

∂

∂v

∫ +∞

−∞
dv′

∫ +∞

0

dk k2 û(k)2

|ε(k, kv)|2 δ[k(v−v
′)]

×
∑

j

(
mjf

′
j

∂P

∂v
−mP

df ′
j

dv′

)
. (174)

Using δ[k(v − v′)] = (1/|k|)δ(v − v′), the integral over v′
is straightforward and yields

∂P

∂t
=

∂

∂v
A(v)

∑

j

(
mjfj

∂P

∂v
−mP

dfj
dv

)
, (175)

where

A(v) = (2π)2
∫ +∞

0

dk
kû(k)2

|ε(k, kv)|2 . (176)

This can be rewritten in the form

∂P

∂t
=

∂

∂v

(
D
∂P

∂v
+ Pη

)
, (177)

with

D(v) = A(v)
∑

j

mjfj(v), (178)

and

η(v) = −mA(v)
∑

j

dfj
dv
. (179)

If the field particles all have the same mass mf , these
expressions simplify in

D(v) = A(v)mff(v), η(v) = −A(v)mf ′(v). (180)

The effective potential (24) is

U(v) = − m

mf
ln f(v), (181)

and the Fokker-Planck equation can be rewritten

∂P

∂t
=

∂

∂v

[
D(v)

(
∂P

∂v
− P

m

mf

d ln f
dv

)]
, (182)

with

D(v) = (2π)2mff(v)
∫ +∞

0

kû(k)2

|ε(k, kv)|2 dk. (183)
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We note that the stationary solution of the Fokker-Planck
equation (182) is

P eq(v) = C f
m
mf (v), (184)

and that P eq(v) = f(v) when the mass of the test particle
is equal to the mass of the field particles m = mf . More
explicit expressions of the diffusion coefficient valid for a
thermal bath are given in [22].

6 Conclusion

In this paper, we have discussed the kinetic theory of sys-
tems with long-range interactions in a relatively unified
framework starting from the Landau and Lenard-Balescu
equations. Using a test particle approach, we have given
explicit expressions for the diffusion coefficient and friction
force entering in the Fokker-Planck equation for different
potentials of interaction in different dimensions of space
and for different distributions of the bath. We have also
considered the possibility of a distribution of mass among
the particles and shown how the results (in particular the
Einstein relation) are modified in that case.

For Coulombian and Newtonian potentials in d = 3, we
have enlightened the connection between results of plasma
physics and results of stellar dynamics which have been
derived almost independently and in a relatively different
form. We have shown that the kinetic equation derived
in stellar dynamics by Chandrasekhar [3] and Rosenbluth
et al. [14] from the Fokker-Planck equation can also be ob-
tained from the Landau [2] equation of plasma physics. We
have then considered the extension of these kinetic theo-
ries in d = 2. For a Maxwellian distribution of the bath,
the diffusion and friction coefficients can be calculated ex-
plicitly in terms of Bessel functions as shown in [22]. In
the present paper, we have generalized our approach to an
arbitrary isotropic distribution of the bath and expressed
the results in terms of integrals of Bessel functions. In the
case where the distribution function of the field particles
is a step function, we have shown that the asymptotic ex-
pressions of our obtained diffusion and friction coefficients
reproduce those found by Benedetti et al. [23] (up to a
factor 2(π − 2)/π) with a different method. More gener-
ally, our analytical expressions give a good agreement with
their numerical results for all velocities. We have shown
analytically that, for N → +∞, the friction diverges log-
arithmically at the critical velocity v0 (while for finite N
there is no divergence). We have also shown that the lin-
ear divergence of the diffusion coefficient resulting from
the Landau approximation could be removed by consider-
ing collective effects as in the Lenard-Balescu treatment
of a 3D plasma. Finally, we have shown how the results of
kinetic theory simplify in d = 1.

For future perspectives, it could be mentioned that the
results presented in this paper can be formally extended
to a generalized class of kinetic equations, associated with
a generalized thermodynamical framework, introduced by
Kaniadakis [43] and Chavanis [44,39]. These generalized
equations could be justified in the case of complex systems

when the transition probabilities from one state to the
other are different from the form that is usually considered
due to microscopic constraints (“hidden constraints”) that
affect the dynamics. However, the domains of application
of these generalized kinetic theories remains to be better
specified.

Appendix A: Alternative derivation
of the diffusion coefficients
and friction force in d = 3

In Section 3, we have derived the expressions of the diffu-
sion coefficients and friction force for an isotropic velocity
distribution of the field particles in d = 3 by using the
Rosenbluth potentials. In this Appendix, we show that
we can obtain the same results by using the method de-
veloped in Section 4 which extends to d = 2.

Starting from the general expression (112) of the dif-
fusion coefficient and introducing a spherical system of
coordinates with the z-axis in the direction of v, we find
after straightforward algebra, that the diffusion tensor can
be written as in equation (18) with

D‖ = (2π)7
∑

j

mj
1
v

∫ +∞

0

k3û(k)2dk

×
∫ +∞

0

dx

[
2

(
1 − 2

x2

)
sinx
x

+ 4
cosx
x2

]
Φj

(x
v

)
,

(185)

D⊥ = (2π)7
∑

j

mj
1
v

∫ +∞

0

k3û(k)2dk

×
∫ +∞

0

dx

[
4
sinx
x3

− 4
cosx
x2

]
Φj

(x
v

)
. (186)

The Fourier transform of an isotropic velocity distribution
of the field particles in d = 3 is

Φ(k) =
1

2π2k

∫ +∞

0

f(v1) sin(kv1)v1dv1. (187)

Substituting this expression in equations (185) and (186)
and introducing the functions

I‖(λ) =
∫ +∞

0

dx

[
2

(
1 − 2

x2

)
sinx
x

+ 4
cosx
x2

]
1
x

sin(λx),

(188)

I⊥(λ) =
∫ +∞

0

dx

[
4
sinx
x3

− 4
cosx
x2

]
1
x

sin(λx),

(189)

we obtain

D‖ = 8A
∑

j

mj

∫ +∞

0

fj(v1)I‖
(v1
v

)
v1dv1. (190)
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D⊥ = 8A
∑

j

mj

∫ +∞

0

fj(v1)I⊥
(v1
v

)
v1dv1. (191)

The integrals (188) and (189) can be calculated explicitly.
Using the results: I‖(λ) = π/3, I⊥(λ) = 2π/3 for λ > 1
and I‖(λ) = (π/3)λ3, I⊥(λ) = πλ− (π/3)λ3 for λ < 1, we
recover the expressions (86) and (87). The friction η can be
obtained from equation (20) and we recover equation (89).

Appendix B: Asymptotic behaviors
of the functions (127) and (128)

B.1 Asymptotic behaviors for λ → 0

In this Appendix, we determine the asymptotic behaviors
of the functions (127) and (128) for λ → 0. Using identi-
ties (113) and (114), equation (127) can be rewritten

R‖(λ) =
1
π

∫ π

0

dθ cos2 θ
∫ +∞

0

eix cos θ J1(λx)
x

dx. (192)

Setting t = cos θ, we obtain

R‖(λ) =
1
π

∫ +1

−1

t2dt√
1 − t2

∫ +∞

0

eixt
J1(λx)
x

dx. (193)

In this expression, t and x are real and the domains of
integration τ0: −1 ≤ t ≤ 1 and ζ0: 0 ≤ x < +∞ are taken
along the real axis. Under these circumstances, we can-
not simply expand the last function in Taylor series for
λ → 0 because the resulting integrals would not be con-
vergent. However, regarding x and t as complex variables,
it is possible to choose paths of integration along which
this expansion will converge. We shall first carry out the
integration on x, for a fixed t. It will therefore be possible
to choose the (complex) integration paths for x dependent
on t. The integration paths are modified as follows: τ0 is
replaced by τ , the semi-circle with radius unity lying in
the domain Im(t) ≥ 0. Therefore, arg(t) varies from π to
0 when t moves from −1 to +1. On the other hand, ζ0
is replaced by ζψt , the line starting from the origin and
forming an angle

ψt =
π

2
− arg(t) (194)

with the real axis. With these new contours,

R‖(λ) =
1
π

Re
∫

τ

t2dt√
1 − t2

∫

ζψt

eixt
J1(λx)
x

dx. (195)

When t moves from −1 to +1, ψt varies from −π
2 to +π

2 .
The argument of ixt is equal to π. Therefore, the real
part of ixt is always negative and the function eixt decays
exponentially to zero as |x| → ∞. Therefore, with the new
paths of integration τ and ζψt , it is possible to expand the
integrand of equation (195) in power series of λ, for λ→ 0,
and integrate term by term:

R‖(λ) =
1
π

Re
∫

τ

t2dt√
1 − t2

∫

ζψt

eixt
(
λ

2
− λ3x2

16
+ ...

)
dx.

(196)

Setting ixt = −y (y real ≥ 0), we get

R‖(λ) = − 1
π

Re
∫ +1

−1

t2dt√
1 − t2

×
∫ +∞

0

e−y
(
λ

2
+
λ3y2

16t2
+ ...

)
dy

it
, (197)

where we recall that t is a complex variable and the inte-
gration has to be performed over the semi-circle of radius
unity lying on the domain Im(t) ≥ 0. Writing t = eiθ, we
find that

Re i
∫ +1

−1

tdt√
1 − t2

= 0, (198)

and

Re i
∫ +1

−1

dt

t
√

1 − t2
= π. (199)

Therefore,

R‖(λ) ∼ λ3

16
Γ (3) =

λ3

8
. (200)

Using a similar procedure, we find that

R⊥(λ) ∼ λ

2
. (201)

Note that this second result can also be obtained directly
from equation (128) by using J1(λx)/x ∼ λ/2 and

∫ +∞

0

J1(x)
x

dx = 1. (202)

B.2 Asymptotic behaviors for λ → +∞
We now determine the asymptotic behaviors of the func-
tions (127) and (128) for λ → +∞. Setting z = λx, we
can rewrite equation (127) as

R‖(λ) =
∫ +∞

0

dz
J1(z)
z

[
J0

( z
λ

)
− J1

(
z
λ

)

z
λ

]
. (203)

Using identity (114), we obtain

R‖(λ) =
1
π

∫ π

0

dθ sin2 θ

∫ +∞

0

dzeiz cos θ

×
[
J0

( z
λ

)
− J1

(
z
λ

)

z
λ

]
. (204)

Setting t = cos θ, using the contours introduced in the
previous section and expanding the last term in Taylor
series for 1/λ→ 0, we find that

R‖(λ) =
1
π

Re
∫

τ

dt
√

1 − t2
∫

ζψt

eizt
[
1
2
− 3

16
z2

λ2
+ ...

]
dz.

(205)



80 The European Physical Journal B

Setting izt = −y (y real ≥ 0) we get

R‖(λ) = − 1
π

Re
∫ +1

−1

dt
√

1 − t2

×
∫ +∞

0

e−y
[
1
2

+
3
16

y2

λ2t2
+ ...

]
dy

it
, (206)

where the integration on t has to be carried out on the
upper semi-circle in the complex plane. Using the identi-
ties

Re i
∫ +1

−1

√
1 − t2

dt

t
= π, (207)

Re i
∫ +1

−1

√
1 − t2

dt

t3
= −π

2
, (208)

we find that

R‖(λ) =
1
2
− 3

16λ2
+ ... (209)

Using a similar procedure, we obtain

R⊥(λ) =
1
2
− 1

16λ2
+ ... (210)

B.3 Relation to hypergeometric functions
and behavior for λ ∼ 1

In fact, the functions (127) and (128) can be expressed
in terms of Hypergeometric functions. We can then easily
obtain their asymptotic behaviors from standard formu-
lae [45]. We have

R‖(λ) =
λ

2

[
F

(
1
2
,
1
2
, 2, λ2

)
− F

(
−1

2
,
1
2
, 2, λ2

)]
,

(211)

R⊥(λ) =
λ

2
F

(
−1

2
,
1
2
, 2, λ2

)
. (212)

For λ→ 0,

R‖(λ) =
λ3

8
+
λ5

32
+

15λ7

1024
+ ... (213)

R⊥(λ) =
λ

2
− λ3

16
− λ5

128
− 5λ7

2048
+ ... (214)

and for λ→ +∞,

R‖(λ) =
1
2
− 3

16λ2
− 5

128λ4
+ ... (215)

R⊥(λ) =
1
2
− 1

16λ2
− 1

128λ4
+ ... (216)

We also note the particular values

R‖(1) =
2
3π
, R⊥(1) =

4
3π
. (217)

From equation (211), we get

R′
‖(λ) =

1
2

[
F

(
1
2
,
1
2
, 2, λ2

)
− F

(
−1

2
,
1
2
, 2, λ2

)]

+
λ2

8

[
F

(
1
2
,
3
2
, 3, λ2

)
+ F

(
3
2
,
3
2
, 3, λ2

)]
. (218)

This function diverges for λ→ 1 like

R′
‖(λ) =

4
3π

− 1
π

(2γ + ln 2 + ln |1 − λ| + 2ψ(3/2)),

(219)

where γ = 0.577216... is the Euler constant and ψ(3/2) =
0.03649... is the Digamma function [45].

Appendix C: Regularization of the linear
divergence

In this Appendix, we show how the linear divergence of
the diffusion coefficient for a Coulombian plasma in d = 2
can be regularized by taking into account collective effects.
When collective effects are taken into account using equa-
tion (7) instead of equation (8), the diffusion coefficient is
given by

Dµν = π(2π)dm
∫
dv1dkkµkν

û(k)2

|ε(k,k · v)|2 δ(k · u)f(v1).

(220)
We concentrate here on a thermal bath with Maxwellian
distribution. Using the same method as in Section 2.5 but
keeping the dielectric function, we obtain

Dµν = π(2π)dmρ
(
βm

2π

)1/2

×
∫
dk
kµkν

k

û(k)2

|ε(k,k · v)|2 e
−βm (k·v)2

2k2 . (221)

For a thermal bath one has (see, e.g., [22]):

|ε(k,k · v)|2 = (1 − η(k)B(k̂ · x))2 + C(k̂ · x)2, (222)

where we have defined k̂ = k/k, x = (βm/2)1/2v, η(k) =
−(2π)dû(k)βmρ, B(z) = 1 − 2ze−z

2 ∫ z
0 e

t2dt and C(z) =√
π|z|e−z2 . The diffusion tensor can be rewritten

Dµν =
π

(2π)dβ2ρm

(
βm

2π

)1/2 ∫
dk̂k̂µk̂νI(k̂ · x)e−(k̂·x)2 ,

(223)
where

I(z) =
∫ +∞

0

kdη(k)2dk
(1 − η(k)B(z))2 + C(z)2

. (224)

For a Coulombian potential, one has η(k) = −k2
D/k

2 and
we obtain

I(z) =
∫ +∞

0

kddk

(B(z) + k2/k2
D)2 + C(z)2

. (225)
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This can be rewritten I(z) = kd+1
D C(z)

d−3
2 Φd(B(z)/C(z))

where Φd(z) =
∫ +∞
0

tddt/((z + t2)2 + 1). If we neglect
collective effects we have instead

ILandau = k4
D

∫ +∞

0

dk

k4−d , (226)

which presents divergences for k → 0 if d ≤ 3. The reg-
ularization of the divergence in d = 3 has been treated
by Balescu [8] and the regularization in d = 1 has been
treated in [22]. Let us focus here on the case d = 2. We
note that, contrary to equation (226), the integral (225) is
well-behaved for k → 0 and k → +∞. Therefore, there is
no linear divergence of the diffusion coefficient and friction
force when collective effects are taken into account.

To obtain the expression of the diffusion tensor, one
has to substitute equation (225) in equation (223), us-
ing z = x cos θ, and carry out the integrations. We shall
simplify the calculations a little bit by introducing an ap-
proximate analytical expression of I(z) (we have checked
numerically that the exact treatment yields close results).
Let us first consider asymptotic behaviors of the previ-
ously defined functions. We have Φ2(z) = (π/(2

√
2))(1 −

z/2+ z2/8 + ...) for z → 0, Φ2(z) ∼ π/(4
√
z) for z → +∞

and Φ2(z) ∼ (π/2)
√−z for z → −∞. On the other hand,

B(z)/C(z) ∼ 1/(
√
π|z|) for z → 0 and B(z)/C(z) ∼

−1/(2
√
π|z|3)ez2 for |z| → +∞. Thus, we find that

I(z)/k3
D → π/4 for z → 0 and I(z)/k3

D → √
π/(2

√
2z2)ez

2

for z → +∞. Let us consider a simple interpolation for-
mula of the form

I(z)
k3
D

=
π

4
+

1
2

(π
2

)1/2
(
ez

2

z2
− 1
z2

− 1

)
. (227)

With this expression, it turns out that the trace of the
diffusion tensor

Dµµ = D0

∫ 2π

0

I(x cos θ)e−x
2 cos2 θdθ, (228)

can be calculated analytically (D0 is the value of the con-
stant in front of the integral in Eq. (223)). When we use
equation (227), we obtain

Dµµ = D0k
3
D

π3/2

2
e−

x2
2

[√
πI0

(
x2

2

)
+
√

2I1

(
x2

2

)]
.

(229)

Alternatively, when we use equation (226), we get

Dµµ
Landau = D0k

4
D2πΛe−

x2
2 I0

(
x2

2

)
, (230)

where Λ =
∫ +∞
0

dk/k2. We note that the trace of the
diffusion coefficient decays like x−1 in each case. We can
write equation (229) in the form of equation (230):

Dµµ = D0k
4
D2πΛ(x)e−

x2
2 I0

(
x2

2

)
, (231)
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4Λ

kD Λ(x)

Fig. C.1. Dependence of the trace of the diffusion tensor with
the velocity, using (i) the Landau approximation or (ii) the
Lenard-Balescu treatment of collective effects.

where Λ(x) is now a function of x which is perfectly well
defined (without divergence). Using equation (229) and
comparing with equation (231) we find for x→ 0 that

Λ(0) =
π

4kD
 0.785...

kD
, (232)

and for x→ +∞ that

Λ(+∞) =
π +

√
2π

4kD
 1.412...

kD
. (233)

This justifies, without introducing an ad hoc large-scale
cut-off, that Λ is of order the Debye length k−1

D as ex-
pected. We also note that the function

kDΛ(x) =
1
4

(
π +

√
2π
I1(x2/2)
I0(x2/2)

)
, (234)

does not vary crucially with x and remains of order unity
(see Fig. C.1). Therefore, using the Landau approxima-
tion and introducing a large scale cut-off at the Debye
length k−1

D seems to be a reasonably good approximation.
However, when one evaluates the component D‖(x) of the
diffusion coefficient, one finds that the treatment using
equation (225) leads to a decay like x−2 for x → +∞
while the Landau approximation (226) leads to a decay
like x−3 (see Sect. 4.2). Therefore, in that case, there are
qualitative discrepancies between the two approaches.
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